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You don't have to be a mathematician to have a feel for numbers. 

John Forbes Nash, Jr. 

To understand this chapter, one must deeply know about the different type of numbers systems; 

especially 

 Rational numbers 

 Irrational numbers  

Also one must know about rigorously 

(http://mathworld.wolfram.com/SquareRoot.html ). 

In mathematics, a real number is a value 

that represents a quantity along a continuous 

line. The real numbers include all the rational 

numbers, such as the integer −5 and the 

fraction 4/3, and all the irrational numbers such as 2   (1.41421356…, the square 

root of two, an irrational algebraic number) and π (3.14159265…, a transcendental 

number). Real numbers can be thought of as points on an infinitely long line called 

the number line or real line, where the points corresponding to integers are equally 

spaced. Any real number can be determined by a possibly infinite decimal 

representation such as that of 8.632, where each consecutive digit is measured in 

units one tenth the size of the previous one. 

 
The real number system can be describe as a “complete ordered field”. Therefore let’s 

discusses and understand these notions first. 
 

 Order 

Let S be a non-empty set. An order on a set S is a relation denoted by “ ” 

with the following two properties 

(i) If  ,x y S ,  

     then one and only one of the statement  x y  , x y ,  y x  is true. 
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(ii) If , ,x y z S  and if  x y ,  y z  then  x z . 

 Ordered Set 

A set is said to be ordered set if an order is defined on S. 

  Examples 

    The set  2,4,6,7,8,9 ,  and  are examples of ordered set with standard 

order relation. 

The set  , , ,a b c d  and , , ,     are examples of set with no order. Also set 

of complex numbers have no order.     

 Bound 

       Upper Bound 

Let S be an ordered set and E S . If there exists a S   such that 

x x E   , then we say that E is bounded above. And   is known as upper 

bound of E. 

        Lower Bound 

Let S be an ordered set and E S . If there exists a S   such that 

x x E   , then we say that E is bounded below. And   is known as lower 

bound of E. 

 Example 

     Consider  1,2,3,...,50S   and  5,10,15,20E  . 

Set of all lower bound of  1,2,3,4,5E  . 

 Set of all upper bound of  20,21,22,...,50E  .  

 Least Upper Bound (Supremum) 

Suppose S is an ordered set, E S  and E is bounded above. Suppose there 

exists an S   such that 

(i)   is an upper bound of E. 

(ii) If   , then   is not an upper bound of E. 

Then   is called least upper bound of E or supremum of E and written as sup E  . 

In other words   is the least member of the set of upper bound of E. 

 Example 

     Consider  1,2,3,...,50S   and  5,10,15,20E  . 

(i) It is clear that 20 is upper bound of E . 

(ii)  If 20  then clearly   is not an upper bound of E . Hence sup 20E  . 
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 Greatest Lower Bound (Infimum) 

Suppose S is an ordered set, E S  and E is bounded below. Suppose there 

exists a S   such that 

(i)   is a lower bound of E. 

(ii) If   ,  then   is not a lower bound of E. 

Then   is called greatest lower bound of E or infimum of E and written as 

inf E  . 

In other words   is the greatest member of the set of lower bound of E. 

 

 Example 

     Consider  1,2,3,...,50S   and  5,10,15,20E  . 

(i) It is clear that 5 is lower bound of E . 

(ii)  If 5  , then clearly   is not lower bound of E . Hence inf 5E  . 

 Example 

If   is supremum of E then   may or may not belong to E. 

Let  1 : 0E r r r     and  2 : 0E r r r    . 

        Then 
1 2sup inf 0E E    but 

10 E  and 
20 E . 

 Example 

Let E  be the set of all numbers of the form  1
n

, where n is the natural 

numbers, that is, 

1 1 1
1, , ,

2 3 4
,E

 
  
 

. 

Then sup 1E   which is in E, but inf 0E   which is not in E. 

 Example 

Consider the sets 

 2: 2A p p p     and 

 2: 2B p p p    , 

where  is set of rational numbers. Then the set A is bounded above. The upper 

bound of A are the exactly the members of B. Since B contain no smallest member 

therefore A has no supremum in . Similarly B is bounded below. The set of all 

lower bounds of B consists of A and  r  with 0r  . Since A has no largest 

member therefore B has no infimum in . 
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 Least Upper Bound Property 

A set S is said to have the least upper bound property if the followings is true 

(i)  S is non-empty and ordered. 

(ii) If E S  and E is non-empty and bounded above then supE exists in S. 

  Greatest lower bound property can be defined in a similar manner. 

 Example 

Let S  be set of rational numbers and 

 2: 2E p p p     

then E , E is non-empty and also bounded above but supremum of E is not in S, 

this implies that  the set of rational number does not posses the least upper bound 

property. 

 Theorem 

Suppose S is an ordered set with least upper bound property. B S , B is non-

empty and is bounded below. Let L be set of all lower bound of B then sup L   

exists in S and also inf B  . 

In particular infimum of B exists in S. 

OR 

An ordered set which has the least upper bound property has also the greatest 

lower bound property. 

Proof 

Since B is bounded below therefore L is non-empty. 

   Since L consists of exactly those y S  which satisfy the inequality. 

 y x      x B   

   We see that every x B  is an upper bound of L. 

    L is bounded above. 

  Since S is ordered and non-empty therefore L has a supremum in S. Let us call it  . 

  If    ,  then   is not upper bound of L. 

B  , 

x x B L       . 

   Now if     then L   because sup L  . 

   We have shown that L   but  L   if   .  

   In other words, if   , then   is a lower bound of B, but   is not, this means 

that inf B  . 
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 Field  

A set F with two operations called addition and multiplication satisfying the 

following axioms is known to be field. 

Axioms for Addition: 

(i)   If ,x y F   then  x y F  . Closure Law 

(ii)  , ,x y y x x y F     . Commutative Law 

(iii) ( ) ( ) , ,x y z x y z x y z F       .  Associative Law 

(iv)  For any x F , 0 F   such that 0 0x x x      Additive Identity 

(v)   For any x F , x F    such that ( ) ( ) 0x x x x            +tive Inverse 
 

Axioms for Multiplication: 

     (i)  If ,x y F   then  x y F .  Closure Law 

     (ii)  , ,x y y x x y F      Commutative Law 

     (iii)  ( ) ( ) , ,x y z x y z x y z F    

     (iv)  For any x F , 1 F   such that 1 1x x x      Multiplicative Identity 

     (v)  For any x F , 0x  ,  
1

F
x

  ,  such that 
1 1

1x x
x x

   
    

   
   tive Inverse. 

Distributive Law 

For any , ,x y z F ,  (i)  ( )x y z xy xz    

(ii)  ( )x y z xz yz    

 Ordered Field 

   An ordered field is a field F which is also an ordered set such that  

i)  x y x z     if  , ,x y z F   and  y z . 

ii)  0xy   if  ,x y F  ,  0x   and 0y  . 

   e.g  the set  of rational number is an ordered field. 

  

 Existance of Real Field 

   There exists an ordered field  (set of real) which has the least upper bound 

property and it contain  (set of rationales) as a subfield. 
 

 
 

 

 

There are many other ways to construct a set of real numbers. We are not 

interested to do so therefore we leave it on the reader if they are interested then 

following page is useful: 

http://en.wikipedia.org/wiki/Construction_of_the_real_numbers 
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 Theorem 

Let , ,x y z . Then axioms for addition imply the following.  

(a)  If x y x z    then y z  

(b)  If x y x   then 0y   

(c)  If 0x y   then y x  . 

(d)  ( )x x    

Proof 

(Note: We have given the proofs here just to show that the things which looks simple must 

have valid analytical proofs under some consistence theory of mathematics) 

(a) Suppose  x y x z   . 

Since   0y y   

     ( )x x y       0x x    

     ( )x x y       by Associative law 

     ( )x x z       by supposition 

     ( )x x z       by Associative law 

     (0) z      0x x    

     z  

(b) Take 0z   in (a) 

0x y x    

0y   

(c) Take z x   in (a) 

( )x y x x     

y x    

(d) Since ( ) 0x x    

then (c) gives ( )x x    
 

 Theorem 

Let , ,x y z . Then axioms of multiplication imply the following. 

(a)  If 0x   and x y x z   then  y z . 

(b)  If 0x   and x y x  then  1y  . 

(c)  If 0x   and 1x y   then  
1

y
x

 . 

(d)  If 0x  , then 
1

1
x

x

 . 
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Proof  

(Note: We have given the proofs here just to show that the things which looks simple must 

have valid analytical proofs under some consistence theory of mathematics) 

(a) Suppose x y x z  

Since 1y y   

   
1

x y
x

 
  
 

   
1

1x
x
   

    
1

x y
x

     by associative law 

         
1

x z
x

     x y x z  

   
1

x z
x

 
  
 

   by associative law 

   1 z z    

(b) Take 1z   in (a) 

1x y x   1y   

(c) Take 
1

z
x

  in (a) 

1
x y x

x
      i.e. 1x y   

1
y

x
   

(d)  Since       
1

1x
x
   

then (c) give  

1

1
x

x

  

 

 Theorem 

Let , ,x y z . Then field axioms imply the following. 

(i)  0 x x   

(ii)  if 0x  , 0y   then 0xy  . 

(iii) ( ) ( ) ( )x y xy x y      

(iv) ( )( )x y xy    
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Proof 

(i)         Since  0 0 (0 0)x x x    

0 0 0x x x    

        0 0x     0x y x y     

(ii)  Suppose 0, 0x y   but 0x y   

Since 
1

1 x y
x y

   

    
1

1 (0)
x y

     0xy   

   1 0      from (i)     0 0x   

a contradiction, thus (ii) is true. 

(iii)     Since ( ) ( ) 0 0x y xy x x y y       …….. (1) 

   Also          ( ) ( ) 0 0x y xy x y y x        ……… (2) 

   Also          ( ) 0xy xy    …………. (3) 

   Combining (1) and (2) 

       ( ) ( )x y xy x y xy      

 ( ) ( )x y x y     ………… (4) 

   Combining (2) and (3) 

( ) ( )x y xy xy xy      

      ( )x y xy     …………. (5) 

   From (4) and (5)  

      ( ) ( )x y x y xy      

(iv)        ( )( ) ( )x y x y xy xy                    using (iii) 

 

 Theorem 

Let , ,x y z . Then the following statements are true in every ordered field. 

i) If 0x   then 0x   and vice versa. 

ii) If 0x   and y z  then  xy xz . 

iii) If 0x   and y z  then  xy xz . 

iv) If 0x   then 2 0x   in particular  1 0 . 

v) If 0 x y   then 
1 1

0
y x

  . 
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Proof 

 i)   If 0x    then  0 0x x x         so that   0x  . 

 If 0x    then  0 0x x x         so that  0x  . 

 ii) Since  z y  we have  0z y y y     

which means that  0z y     also  0x   

    ( ) 0x z y   

   0xz xy    

0xz xy xy xy      

0 0xz xy     

xz xy   

iii) Since y z        y y y z      

 0z y     

 Also  0x     0x    

 Therefore    ( ) 0x z y    

    0xz xy      0xz xy xz xz       

    xy xz   

 

iv)   If 0x   then  0x x     2 0x   

  If 0x    then   0x    ( )( ) 0x x      2( ) 0x      2 0x   

  i.e.   if 0x    then  2 0x  ,  since  21 1   then 1 0 . 

v)    If 0y   and 0v     then   0yv  , But 
1

1 0y
y

 
  

 
    

1
0

y
   

 Likewise    
1

0
x
    as   0x   

If we multiply both sides of the inequality x y  by the positive quantity 

1 1

x y

  
  
  

 we obtain  
1 1 1 1

x y
x y x y

      
      

      
 

i.e.      
1 1

y x
  

 finally  
1 1

0
y x

  . 
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 Theorem (Archimedean Property) 

If x , y  and 0x    then there exists a positive integer n such that 

    nx y .  

Proof 

Let  : 0,A nx n x x      

   Suppose the given statement is false i.e.  nx y . 

   y is an upper bound of A. 

   Since we are dealing with a set of real therefore it has the least upper bound 

property. 

   Let sup A   

  x   is not an upper bound of A. 

  x mx     where mx A  for some positive integer m. 

  ( 1)m x     where  m + 1 is integer, therefore ( 1)m x A  . 

   This is impossible because   is least upper bound of A  i.e. sup A  . 

   Hence we conclude that the given statement is true i.e. nx y . 

 The Density Theorem 

If x , y  and x y  then there exists p  such that  x p y   . 

i.e. between any two real numbers there is a rational number or  is dense in . 

Proof 

Since x y ,  therefore 0y x   

     there exists a positive integer n such that  

( ) 1n y x    (by Archimedean Property) 

        1ny nx    …………… (i) 

   We apply (a) part of the theorem again to obtain two +ive integers 
1m  and 

2m   

 such that  
1 1m nx    and  

2 1m nx    

    
2 1m nx m    , 

   then there exists and integers  
2 1( )m m m m    such that  

1m nx m    
 

   nx m     and   1m nx   

   1nx m nx     

   nx m ny       from (i) 

   
m

x y
n

    
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  x p y       where   
m

p
n

   is a rational. 

 Theorem 

   Given two real numbers x and y, x y  there is an irrational number u such that 

   x u y  . 

Proof 

   Take 0, 0x y   

   Then  a rational number q such that  

0
x y

q
 

     where   is an irrational. 

     x q y    

     x u y   , 

   where u q  is an irrational as product of rational and irrational is irrational. 

 Theorem 

   For every real number x there is a set  E of rational number such that supx E . 

Proof 

   Take { : }E q q x    where x is a real. 

   Then E is bounded above. Since E   therefore supremum of E exists in . 

   Suppose sup E  . 

   It is clear that  x  . 

   If x   then there is nothing to prove. 

   If x   then   q  such that  q x   , 

   which can not happened hence we conclude that real x is supE. 
 

 Question  

   Let E be a non-empty subset of an ordered set, suppose   is a lower bound of E 

and   is an upper bound then prove that   . 

Proof 

   Since E is a subset of an ordered set S i.e. E S . 

   Also   is a lower bound of E therefore by definition of lower bound  

x    x E   …………… (i) 

   Since   is an upper bound of E therefore by the definition of upper bound 

x    x E   …………… (ii) 

   Combining (i) and (ii) 

x    

         as required. 
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 The Extended Real Numbers 

   The extended real number system consists of real field  and two symbols   

and  , We preserve the original order in  and define 

  x x      . 

   The extended real number system does not form a field. Mostly we write    .    

   We make following conventions: 

i) If x is real the , , 0
x x

x x 


      
 

.      

ii) If 0x   then ( ) , ( )x x       . 

iii) If 0x   then ( ) , ( )x x      . 

 

 

 Euclidean Space 

   For each positive integer k, let k  be the set of all ordered k-tuples  

      
1 2( , ,..., )kx x x x    

   where 
1 2, ,..., kx x x  are real numbers, called the coordinates of x . The elements of 

k  are called points, or vectors, especially when 1k  . 

   If 
1 2( , ,..., )ny y y y  and   is a real number, put 

1 1 2 2( , ,..., )k kx y x y x y x y      

    and  
1 2( , ,..., )kx x x x     

   So that kx y    and  kx  . These operations make k  into a vector space 

over the real field. 

   The inner product or scalar product of x  and y  is defined as  

1 1 2 2

1

. ( ... )
k

i i k k

i

x y x y x y x y x y


      

   And the norm of x  is defined by 
1

2
1

2 2

1

( )
k

ix x x x
 

    
 
  

   The vector space k  with the above inner product and norm is called  

Euclidean k-space. 
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 Theorem 

   Let , nx y  then 

i) 
2

x x x   

ii) x y x y    (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 
1

2( )x x x    therefore 
2

x x x   

ii)  If 0x   or 0y  , then Cauchy-Schwarz’s inequality holds with equality. 

If 0x   and 0y  , then for   we have 

2

0 x y       x y x y      

         x x y y x y          

    ( ) ( ) ( ) ( )x x x y y x y y                

    
22 22 ( )x x y y      

   Now put 
2

x y

y



   (certain real number) 

 
    

2

22

2 4
0 2

x y x y x y
x y

y y

  
        

 
2

2

2
0

x y
x

y


        

2 22
0 x y x y      2 2| |a a a   , 

  0 x y x y x y x y      . 

Which hold if and only if  

      0 x y x y    

i.e. x y x y  . 

 

 Question  

   Suppose , , nx y z  the prove that 

a) x y x y    

b) x z x y y z      

Proof 

 a)  Consider         
2

x y x y x y      
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x x x y y x y y         

    
22

2x x y y     

22
2x x y y        | |a a a   . 

   
22

2x x y y     x y x y   

    
2

x y   

    x y x y      …………. (i) 

b) We have           x z x y y z      

x y y z      from (i)  

 

 Relatively Prime 

Let ,a b . Then a  and b  are said to be relatively prime or co-prime if a  and b  

don’t have common factor other than 1. If a  and b  are relatively prime then we 

write ( , ) 1a b  .  
 

 Question  

   If r is non-zero rational and x is irrational then prove that r x  and r x  are 

irrational. 

Proof 

   Let r x  be rational. 

a
r x

b
      where ,a b  , 0b   such that  , 1a b  , 

a
x r

b
    

   Since r is rational therefore 
c

r
d

   where ,c d , 0d   such that  , 1c d  , 

a c
x

b d
      

ad bc
x

bd


  . 

   Which is rational, which can not happened because x is given to be irrational. 

   Similarly let us suppose that r x  is rational then  

       
a

r x
b

         for some ,a b , 0b   such that  , 1a b   

1a
x

b r
    
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   Since r is rational therefore 
c

r
d

   where ,c d , 0d   such that  , 1c d   

1a a d ad
x

cb b c bc
d

       

   Which shows that x is rational, which is again contradiction; hence we conclude 

that r x  and r x  are irrational.     
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